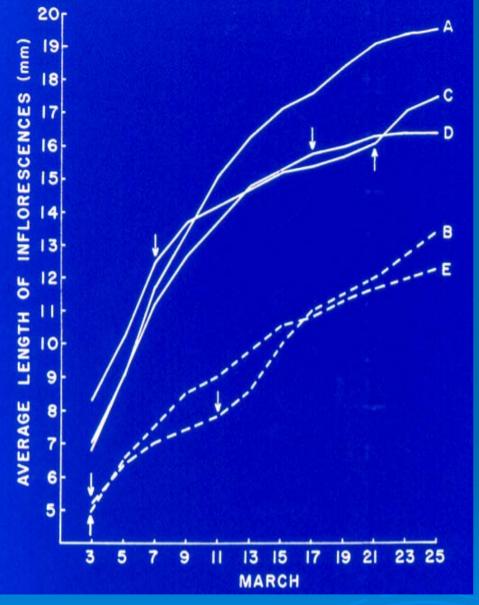


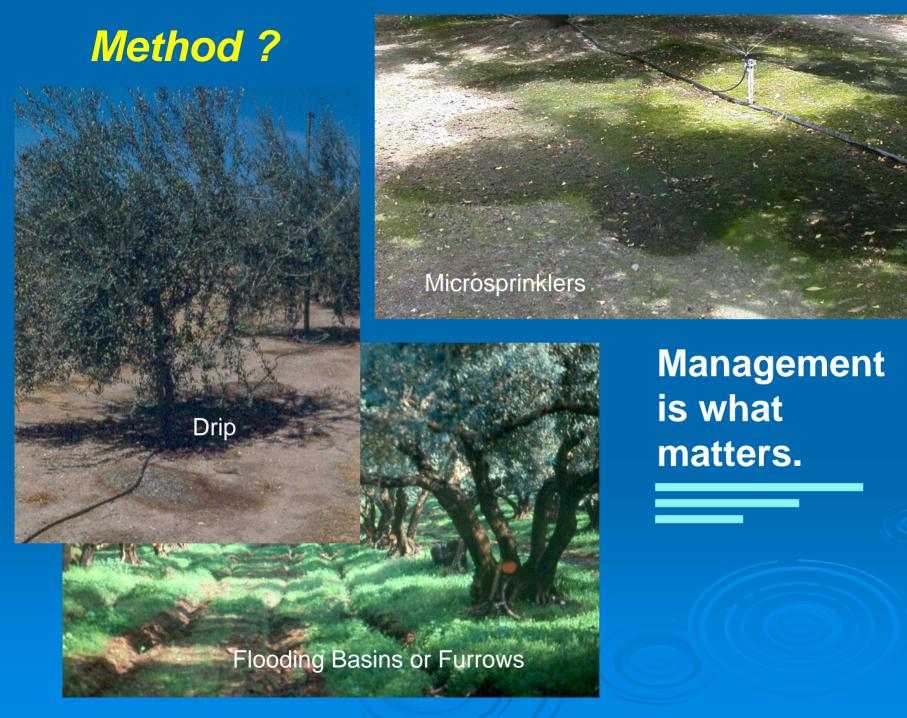
Olive Irrigation Management

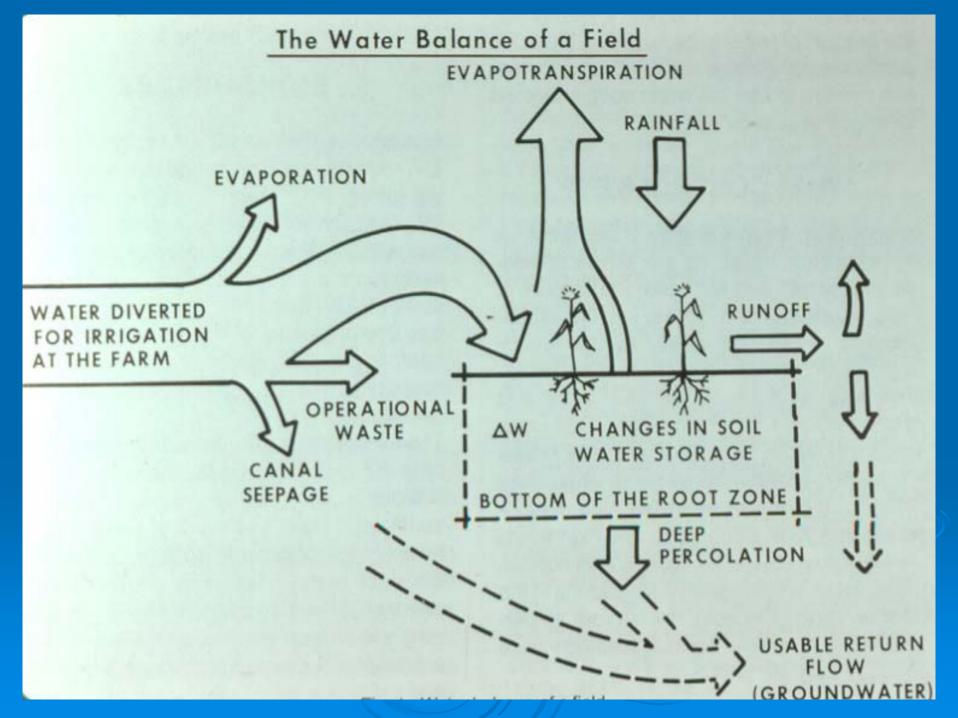
Joe Connell, Farm Advisor UC Cooperative Extension Butte County


Agriculture & Natural Resources

University of California Cooperative Extension

Wildfire!

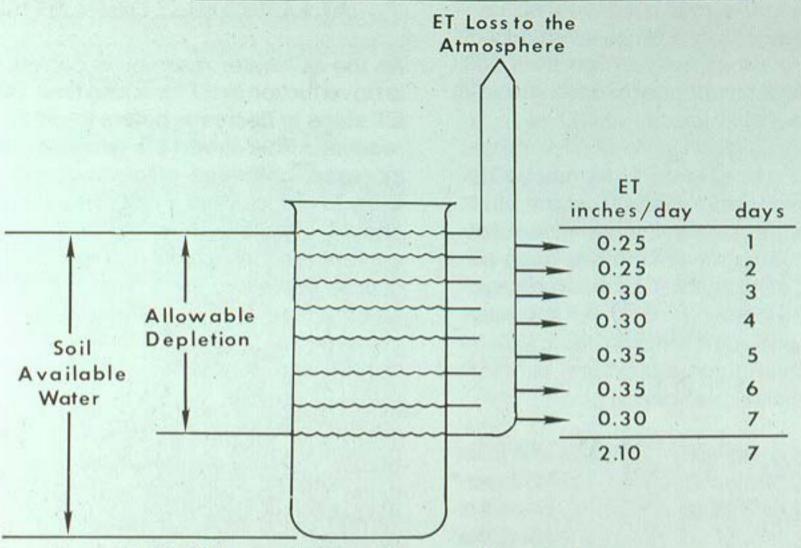

- * Continuous ample soil moisture.
- * Moisture deficit in mid-March, at intermediate flower development.
- * Moisture deficit in late March.
- * Moisture deficit in early March, an early stage of flower development.
- * Continuous moisture deficiency.


Source: Dr. H.T. Hartmann, UCD Pomology

Inflorescence Growth

Effect of Early Spring Water Stress on Barouni Olives (Hartmann, 1960)

Water Stress <u>Timing</u>	% Leaf <u>Drop</u>	# Flowers/ Inflorescence	% Perfect Flowers	# Fruits / 100 Inflorescences
Control (No stress)	2.8	15.7	27.4	3.3
3/3-3/11	12.2	4.9	65.4	4.3
3/7-3/21	8.4	8.7	4.0	0.1
3/18-4/4	4.8	8.3	9.3	0.6
3/1-4/4	12.5	6.7	0.6	0.3
P = .05		3.2	21.4	


Average Reference Crop Water Use, (Eto), inches.

	Fresno	Orland	St. Helena
March	3.3	3.1	2.8
April	4.8	4.8	3.9
May	6.7	6.7	5.1
June	7.8	7.4	6.1
July	8.4	8.8	7.0
August	7.1	7.3	6.2
September	5.2	5.6	4.8
October	3.2	3.8	3.1
November	1.4	1.7	1.4
TOTAL	47.9	49.2	40.4

Reference Eto, olive Kc's and orchard water use (clean cultivated) in Orland

	Eto (inches)	<u>Kc</u>	Etc (inches)
March	3.1	0.75	2.3
April	4.8	0.75	3.6
May	6.7	0.75	5.0
June	7.4	0.75	5.6
July	8.8	0.75	6.6
August	7.3	0.75	5.5
September	5.6	0.75	4.2
October	3.8	0.75	2.9
November	1.7	0.75	1.3
TOTAL	49.2		37.0

The Water Budget Method of Irrigation

IRRIGATE

- 1. When?-----After 7 days
- 2. How much?-- Apply 2.10 inches of water + losses (Efficiency consideration)

WEEKLY SOIL MOISTURE LOSS IN INCHES

(Estimated Evapotranspiration)

08/05/05 through 08/11/05

West of S	Sacramento R	iver	East of Sacrame	ento River
Weekly	Accum'd		Weekly	Accum'd
Water	Seasonal	Crop	Water	Seasonal
Use	Use	(Leafout Date)	Use	Use
1.78	32.92	Pasture	1.63	30.66
1.71	31.81	Alfalfa	1.56	29.58
1.36	24.92	Olives	1.23	23.29
1.16	21.50	Citrus	1.06	19.97
1.71	29.95	Almonds (3/1) *	1.56	27.80
1.71	28.83	Prunes (3/15) *	1.56	26.73
1.71	27.18	Walnuts (4/1) *	1.56	25.11
1.53	30.19	Urban Turf Grass	1.42	28.24

WEEKLY APPLIED WATER IN INCHES

50% 60% 70% 80% 90% ← Efficiency → 50% 60% 70% 80% 2.7 2.3 1.9 1.7 1.5 Olives 2.5 2.1 1.8 1.5		
27 22 40 47 45 Olives 25 24 49 45	90%	
2.7 2.3 1.9 1.7 1.5 Olives 2.5 2.1 1.8 1.5	1.4	
2.3 1.9 1.7 1.5 1.3 Citrus 2.1 1.8 1.5 1.3	1.2	
3.4 2.9 2.4 2.1 1.9 Almonds (3/1) 3.1 2.6 2.2 2.0	1.7	
3.4 2.9 2.4 2.1 1.9 Prunes (3/15) 3.1 2.6 2.2 2.0	1.7	
3.4 2.9 2.4 2.1 1.9 Walnuts (4/1) 3.1 2.6 2.2 2.0	1.7	

¹ The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip Irrigation, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

For further information, contact the Tehama Co. Farm Advisor's office at 527-3101.

ET is available in local papers.

Or, over the internet from DWR.

Current water use for irrigation scheduling - - -

✓Et Data:
www.cimis.water.ca.gov

Yield Components in Olive:

- **✓** Fruit load
- **✓ Fruit size and Distribution**
- **✓** Oil Content

So, with this background, we know ---

- Olive is drought tolerant; can survive with little or no irrigation.
- Potential water use of olive orchards is at least 35 acre-in./acre/year in Sacramento & San Joaquin valleys.
- Sustained deficit irrigation drastically reduces production; FRUIT SIZE is the most sensitive yield component.

Regulated Deficit Irrigation, a controlled stress

Date	Treatment 1 Full Etc (in.)	RDI%	Treatment 2 Irr (in.)	RDI%	Treatment 3 Irr (in.)	RDI%	Treatment 5 Irr (in.)
Mar 1-15	1.2	100	1.2	100	1.2	100	1.2
Mar 16-31	1.2	100	1.2	100	1.2	100	1.2
Apr 1-15	1.8	100	1.8	100	1.8	100	1.8
Apr 16-30	1.8	100	1.8	100	1.8	100	1.8
May 1-15	2.3	100	2.3	100	2.3	100	2.3
May 16-31	2.5	100	2.5	100	2.5	50	1.3
Jun 1-15	2.9	100	2.9	50	1.5	50	1.5
Jun 16-30	2.9	50	1.5	50	1.5	50	0.7
Jul 1-15	3.1	50	1.6	50	1.6	50	0.8
Jul 16-30	3.3	50	1.7	50	1.7	50	0.8
Aug 1-15	2.7	100	2.7	50	1.4	50	0.7
Aug 16-31	2.8	100	2.8	100	2.8	50	1.4
Sep 1-15	2.0	100	2.0	100	2.0	100	1.0
Sep 16-30	2.0	100	2.0	100	2.0	100	2.0
Oct 1-15	1.2	100	1.2	100	1.2	100	1.2
Oct 16-31	1.3	100	1.3	100	1.3	100	1.3
Nov 1-15	0.5	100	0.5	100	0.5	100	0.5
TOTAL (in.)	35.5		31.0		28.3		21.5
Water Save	d (in.)		4.6		7.4		14.0
Water Save	d (%)		12.9%		20.8%		39.5%

Dr. Goldhammer, Irrigation Specialist, UC KAC, conducted a Regulated Deficit Irrigation trial producing these results for canning olives ----

Irrigation Regime (% water saved)	Individual Fresh Fruit Wt. (g)	Fruit Load (#/tree)	Total Fruit Yield (tons/acre)	Crop Value (\$/ton)	Gross Revenue (\$/acre)
Control	4.12	19690	8.12	412	3340
T2 (13%)	4.15	18200	7.65	431	3310
T3 (21%)	4.11	20010	8.25	430	3580
T5 (40%)	4.23	16070	6.61	426	2800
	NSD	NSD	NSD	NSD	NSD

Summary ---

- Fruit growth slows during the imposition of *regulated* deficit irrigation (RDI) but accelerates upon reintroduction of full irrigation.
- RDI regime saved up to 21% (7.4 in) of normal water use (35.4 in) and had no effect on fruit size.

Conclusions ---

- ✓ Even for canning olives, a RDI strategy can save water while maintaining top yields of high quality fruit.
- ✓ Know what you're doing & must have good control of your water applications.