UCCE Sonoma County
University of California
UCCE Sonoma County

Posts Tagged: Innovation

Winegrape vineyards can be converted for machine pruning without replanting

Mechanical pruning reduced labor costs by 90%, resulted in increased grape yields and berry quality was as good or better than hand-pruned vines.

Wine grape growers in the San Joaquin Valley who want to switch from hand pruning to mechanical pruning won't have to replant their vineyards to accommodate machinery, according to a new study published in HortTechnology by University of California Cooperative Extension researchers. Instead, growers can retrain the vines to make the transition, without losing fruit yield or quality.

Mechanical pruning reduced labor costs by 90%, resulted in increased grape yields and had no impact on the grape berry's anthocyanin content. That's welcome news for growers because the cost of re-establishing a vineyard in the region is roughly $15,600 per acre.

“We found that growers do not have to plant a new vineyard to mechanize their operations,” said Kaan Kurtural, UC Cooperative Extension specialist in the UC Davis Department of Viticulture and Enology. “We have proven beyond a doubt that an older vineyard can be converted to mechanization. There is no loss in yield during conversion and post-conversion yield is better and fruit quality is equivalent to or better than hand-managed vines. The economies of scale are evident in the savings per acre and per vine as depicted in the balance sheet provided with the newly published paper.” 

The research was conducted in an 8-acre portion of a 53-acre, 20-year-old Merlot vineyard in Madera County. After completion of the research project, the grower converted the rest of the 53-acre vineyard to single high-wire sprawling system. Many other wine grape growers have followed suit.

The Wine Group, which manages 13,000 acres of vineyards across Central California, is establishing new vineyards and converting old vineyards for mechanical pruning and suckering, said vineyard manager Nick Davis. Davis, who works closely with Kurtural and the UCCE viticulture advisor in Fresno County, George Zhuang, said the company greatly values the UC Cooperative Extension research that is guiding the changes.

“I think extensionists are undervalued,” Davis said. “We lean on them for applied research, which has been wonderful. They offer us what we can't provide ourselves.”

A bilateral cordon-trained, mechanically box-pruned single high-wire sprawling system proved to be the most successful system for mechanical pruning in the San Joaquin Valley.

More than half of all California wine grapes are grown in the San Joaquin Valley. Worker shortages, rising labor costs, low returns and occasional droughts are driving wine grape growers to seek innovative ways to sustain their businesses.

“To help growers maintain the profitability of their vineyards, we're studying the use of machines to reduce the number of people needed to perform tasks like pruning,” Zhuang said.

“Because the canopy architecture and yield characteristics of mechanically pruned vines are different from vines that are hand-pruned, the water and fertilizer requirements for the mechanically pruned vines can be quite different. So we are studying the yield and fruit quality of grapes produced on different rootstocks in mechanical pruning systems in the San Joaquin Valley,” Zhuang said.

UC scientists are studying the use of machines for pruning to reduce the number of people needed to maintain a vineyard.

The Madera field study was conducted for three consecutive seasons in the hot climate conditions typical of the San Joaquin Valley. In this area, traditional vineyards are head-trained to a 38-inch-tall trunk above the vineyard floor and two eight-node canes are laid on a catch wire in opposite directions and two eight-node canes are attached to a 66-inch high catch wire. Although this traditional training system can work for mechanical harvesting, it doesn't accommodate mechanical dormant pruning and shoot removal with limited success in other mechanical canopy management operations.

To accommodate mechanical pruning and shoot removal, the vines were converted to a bilateral cordon-trained, spur-pruned California sprawl training system, or to a bilateral cordon-trained, mechanically box-pruned single high-wire sprawling system.

The latter option proved to be the most successful system for mechanical pruning in the San Joaquin Valley.

 

Posted on Monday, April 15, 2019 at 2:22 PM
Tags: George Zhuang (5), Grapes (18), Innovation (3), Kaan Kurtural (9), technology (14)
Focus Area Tags: Agriculture Innovation

Open Farm 2018 and UC ANR promote ag technology

A torrent of technology is flowing into the agricultural sector. To make sense of it, UC Agriculture and Natural Resources, Fresno State and West Hills Community College came together with technology vendors and growers at Open Farm 2018, held in October at UC ANR's Kearney Agricultural Research and Extension Center in Parlier.

“A lot of technology is coming out,” said Kearney director and UC Cooperative Extension agronomy specialist Jeff Dahlberg. “I need to caution you, it's not all is based on science. We are helping with testing.”

Kearney REC director Jeff Dahlberg speaks to participants at Open Farm.

Dalhberg has been working with Blue River Technologies to monitor the growth of dozens of sorghum cultivars. Throughout the growing season, Blue River flew drones over the sorghum nursery with cameras to capture their growth and development.

“We have a huge phenotypic dataset,” Dalhberg said. “It will be compared at the genetic level with plant samples and help us identify genes associated with drought tolerance.”

At Open Farm, Dahlberg's field presentation was paired with Smartfield, a company that uses fixed cameras and field sensors to gather information for “big data crunching.”

PowWow Energy, based in San Francisco with a field office at the Water, Energy and Technology (WET) Center at Fresno State, met near a well at Kearney to explain how the company can help growers with decision support tools. The company believes their technology will be useful for farmers tracking groundwater usage, data that will be key to complying with new rules associated with the Sustainable Groundwater Management Act (SGMA). SGMA, signed by Gov. Brown in 2014, gives local agencies the authority to manage groundwater in a way that achieves sustainability by 2042.

Representatives of PowWow Energy meet with Open Farm participants near a well at the UC Kearney Agricultural Research and Extension Center.

UCCE agriculture mechanization specialist Ali Pourezza introduced a prototype he developed with junior specialist German Zuniga-Ramirez that he believes will make early detection of the devastating citrus disease huanglongbing as easy as taking a photo with a smartphone camera.

The idea is based on the optical characteristics of the disease in leaves. By using a polarizing light, leaves on diseased trees are immediately identified. Infected trees can then be torn out before insects have the chance to spread the disease to other trees.

Pourezza and Zuniga-Ramirez are seeking funding to take the prototype to the next level, and eventually commercialize the product.

UCCE specialist Ali Pourreza compares a citrus leaf infected with HLB with one that is not infected.

This sampling of innovations being showcased at Kearney is part of a continuing effort by UC to connect the ag community with technology developers and resources that is shepherded by a new UC ANR program called The VINE, Verde Innovation Network For Entrepreneurship. The VINE was created by UC ANR in 2017 to link entrepreneurs with mentors, advisors, collaborators, events, competitions and education.

At Open Farm 2018, UC ANR vice president Glenda Humiston was the keynote speaker. She outlined three areas where farmers, the technology sector and academia can work together to accelerate technology application in rural parts of California: improve broadband access, identify high-value uses for biomass and establish water infrastructure in rural communities.

To address the broadband issue, Humiston is leading an initiative to document mobile internet speed across California – including rural areas. In April 2019, Humiston plans to enlist 4-H members across the state to test internet speed using the free smartphone app CalSpeed several times over a period of a week.

“This will give us a snapshot of mobile broadband service availability,” Humiston said.

The crisis in the Sierra Nevada – where millions of trees died from the drought of 2010-16 – could prompt the development of high-value uses of biomass and establish a market for biomass derived in the agricultural sector, she said.

Humiston also took the opportunity to ask participants to help make sure the critical services UC ANR provides – including county-based UC Cooperative Extension, nine research and extension centers, the UC integrated pest management program, 4-H youth development, UC Master Gardeners and others – continue to fuel the California economy. Diminished funding from the State of California is taking a toll on the UC ANR budget.

“We need people like you to work with the VINE to set up improved support,” Humiston said.

Posted on Monday, October 8, 2018 at 2:59 PM
Tags: Ali Pourreza (2), innovation (3), Jeff Dahlberg (20), technology (14), The VINE (3)
Focus Area Tags: Agriculture Innovation

Sacramento Region's AgStart Combines Technology & Agriculture

Reposted from California Economic Summit

Have you ever planted a seed, be it a plant, fruit or flower, and watched it grow? Patience is the key to seeing that seed sprout and reach its full potential.

In this case, the Sacramento Regional Technology Alliance (SARTA) has planted the seed with its newest industry-cluster focused program called AgStart, combining the strength of California's tech and agriculture sectors.

Thanks to an i6 Challenge grant from the US Economic Development Administration (EDA), SARTA and UC Davis are working together to support, identify, invigorate and accelerate agriculture technology companies and entrepreneurs. 

"Currently there is a huge, and growing, need for agriculture technology to increase productivity and yield, improve cost effectiveness, and enhance the efficient use of resources such as water, energy, and land,” said Meg Arnold, SARTA CEO. “Ag technologies can, among other things, turn farm waste into energy, improve the drought tolerance of crops, increase food safety, provide for integrated pest management, drive the efficient use of water, and so much more.”

AgStart covers an area of 11 counties around Sacramento from Kern to San Joaquin and Stanislaus Counties.

The plan for the first year will be to:

• Develop and maintain the first map of the region's ag tech companies. -- They’re already over halfway to their goal of identifying 120 tech companies by the end of the year.

• Host a PitchFest, a competition to highlight successful ag tech companies -- Finals are Thursday, September 19

• Represent the region at the prestigious Ag Innovation Showcase in Missouri, the largest ag tech showcase in the world.

• Bring the ag innovation sector to SARTA's long-standing CleanStart Showcase in October.

"We are working with ag tech companies in their research and development,” said Dough Kohl, Program Director, AgStart. “We are making leadership series available, we are seeing where we can help introduce them to investors, as well as others in the ag tech industry who they might partner with and guiding them along the way to bring them to that next level.”

To read the rest of the story...

 

Posted on Friday, August 30, 2013 at 11:22 AM
  • Author: Cheryl Getuiza
Tags: Agriculture (37), Innovation (3), Sacramento (4), Technology (14)
 
E-mail
 

University of California Cooperative Extension, Sonoma County
133 Aviation Blvd Suite 109, Santa Rosa, CA 95403  Phone: 707.565.2621  Fax: 707.565.2623
Office Hours:  M-F, 8am-Noon & 1pm-4pm

Like us on Facebook: UCCE Sonoma                        Follow us on Twitter @UCCESonoma 

Webmaster Email: klgiov@ucanr.edu